Blue whale (Balaenoptera musculus)

Abstract To effectively protect and manage marine mammals, contemporary information on their abundance and distribution is essential. Several factors influence present-day insight including the accessibility of the study area and the degree of difficulty in locating and studying target species. The offshore waters of the Gulf of Alaska are important habitat to a variety of cetaceans yet have remained largely unsurveyed due to its remote location, vast geographic area, and challenging environmental conditions.

Mortality from collisions with vessels is one of the main human causes of death for large whales. Ship strikes are rarely witnessed and the distribution of strike risk and estimates of mortality remain uncertain at best. We estimated ship strike mortality for blue humpback and fin whales in U.S. West Coast waters using a novel application of a naval encounter model. Mortality estimates from the model were far higher than current minimum estimates derived from stranding records and are closer to extrapolations adjusted for detection probabilities of dead whales.

Tags have been used to examine migration routes and habitat use of large whales for >40 yr, however, evaluation of tag wound healing has largely been short-term, anecdotal or generalized. This study developed methods for systematic photographic assessment of long-term external consequences of tag placement, to determine potential differences in wound healing between species and tag types and thus advise future tagging efforts to possibly minimize undesirable side effects.

Stable isotope analysis in mysticete skin and baleen plates has been repeatedly used to assess diet and movement patterns. Accurate interpretation of isotope data depends on understanding isotopic incorporation rates for metabolically active tissues and growth rates for metabolically inert tissues. The aim of this research was to estimate isotopic incorporation rates in blue whale skin and baleen growth rates by using natural gradients in baseline isotope values between oceanic regions.

Characterization of multivariate time series of behaviour data from animal-borne sensors is challenging. Biologists require methods to objectively quantify baseline behaviour, and then assess behaviour changes in response to environmental stimuli. Here, we apply hidden Markov models (HMMs) to characterize blue whale movement and diving behaviour, identifying latent states corresponding to three main underlying behaviour states: shallow feeding, travelling, and deep feeding.

Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources.

Pages