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Abstract
False killer whales (Pseudorca crassidens) are large delphinids typically found in deep water far offshore. However, in the 
Hawaiian Archipelago, there are 2 resident island-associated populations of  false killer whales, one in the waters around 
the main Hawaiian Islands (MHI) and one in the waters around the Northwestern Hawaiian Islands (NWHI). We use 
mitochondrial DNA (mtDNA) control region sequences and genotypes from 16 nuclear DNA (nucDNA) microsatellite 
loci from 206 individuals to examine levels of  differentiation among the 2 island-associated populations and offshore 
animals from the central and eastern North Pacific. Both mtDNA and nucDNA exhibit highly significant differentia-
tion between populations, confirming limited gene flow in both sexes. The mtDNA haplotypes exhibit a strong pattern 
of  phylogeographic concordance, with island-associated populations sharing 3 closely related haplotypes not found 
elsewhere in the Pacific. However, nucDNA data suggest that NWHI animals are at least as differentiated from MHI 
animals as they are from offshore animals. The patterns of  differentiation revealed by the 2 marker types suggest that 
the island-associated false killer whale populations likely share a common colonization history, but have limited con-
temporary gene flow.
Subject areas:  Population structure and phylogeography
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The impact of  evolutionary and demographic forces on a 
genetic locus will depend on the transmission mode, ploidy, 
mutation rate and mechanism, and functional constraints of  

that locus. Differences in the patterns of  genetic diversity 
and differentiation from multiple loci can therefore provide 
insight into the evolutionary history, dispersal patterns, social 
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structure, and mating patterns of  populations. Differentiation 
in mitochondrial DNA (mtDNA) is expected to be higher 
than that in nuclear markers due to differences in effec-
tive population size between the mitochondrial and nuclear 
genomes. However, when the difference between the 2 
marker types is greater than expected, it can indicate either 
sex-biased dispersal or male-mediated gene flow without dis-
persal (Peters et al. 2012). Sometimes mtDNA and nuclear 
DNA (nucDNA) show contrasting patterns of  genetic dif-
ferentiation, with the hierarchical relationships between pop-
ulations differing between the 2 marker types (e.g., Gomez 
et al. 2002). Such complex patterns of  genetic structure can 
result from stochastic variation, selective sweeps, histori-
cal events such as introgression or may reflect differences 
between the colonization history of  populations (reflected in 
mtDNA genealogies) and current patterns of  nuclear gene 
flow (reflected in nucDNA).

We examine the colonization history, social structure, 
and contemporary differentiation among populations of  
false killer whales (Pseudorca crassidens; Owen 1846)  in the 
North Pacific by comparing phylogeographic patterns 
and genetic differentiation from mtDNA and nucDNA. 
False killer whales are a large delphinid found in tropical 
and subtropical waters throughout the world. Like many 
marine species, their offshore distribution makes them 
difficult to study. Most of  what is known about false 
killer whales comes from studies around the Hawaiian 
Archipelago. Three populations have been described 
within Hawaiian waters based on photo-identification, sat-
ellite telemetry, and genetic data (Chivers et al. 2007; Baird 
et al. 2008, 2010, 2013). The main Hawaiian Islands (MHI) 
and Northwestern Hawaiian Islands (NWHI) populations 
are small, with the MHI population estimated to number 
only about 151 (coefficient of  variation [CV] = 0.20) indi-
viduals (Oleson et al. 2010). The only abundance estimate 
available for the NWHI population is 552 (CV  =  1.09) 
individuals, but there is a large uncertainty associated with 
this estimate because it is based on only a small number 
of  encounters during a single survey within their range 
(Bradford et al. 2014). The offshore population is larger—
abundance within the 200-nmi Exclusive Economic Zone 
(EEZ) around Hawai’i is estimated at 1552 (CV  =  0.66) 
individuals (Bradford et  al. 2014). However, that may be 
an underestimate, as the range of  the offshore popula-
tion is unknown and likely extends beyond the EEZ. The 
MHI, NWHI, and offshore populations are managed as 
separate population stocks under the US Marine Mammal 
Protection Act (Carretta et al. 2013).

The MHI population is the subject of  an ongoing photo-
identification study that dates back to 1986 (Baird et al. 2008, 
2012). High resighting rates, sighting histories that span dec-
ades for many individuals, and telemetry data that show ani-
mals spending the majority of  their time in water less than 
1000-m deep (Baird et al. 2010, 2012) demonstrate that this 
is a resident, island-associated population (Baird et al. 2008, 
2010, 2012). Though the ranges of  the MHI and offshore 
populations do overlap slightly (Baird et al. 2010), there are 
no documented interactions between the 2 populations.

The MHI population exhibits strong social structure. 
Social network analysis revealed the existence of  3 large 
social clusters that interact regularly but differ in their habitat 
usage patterns (Baird et al. 2012). There is evidence that the 
MHI population has undergone a dramatic decline over the 
past 2 decades (Reeves et al. 2009; Oleson et al. 2010). If  the 
MHI population were extirpated, the habitat might not be 
recolonized quickly, just as the waters of  the Mediterranean 
surrounding Italy have remained devoid of  false killer whales 
for over 50  years following extirpation due to hunting 
(Stanzani and Piermarocchi 1992; Reeves and Notarbartolo 
di Sciara 2006). Following a status review (Oleson et al. 2010), 
the MHI population was listed as endangered under the US 
Endangered Species Act (Federal Register 2012).

Far less is known about the NWHI population, which 
was only discovered in 2010 (Baird et  al. 2013). Photo-
identification matches between animals encountered near 
Nīhoa in 2010 and animals encountered near Kaua’i in 2008 
suggest long-term site fidelity. Telemetry data indicate that the 
population ranges from Kaua’i to at least Gardner Pinnacles 
and maintains a close association with islands, atolls, and 
seamounts (Baird et al. 2013; Baird RW, unpublished data). 
Though the range of  the NWHI and MHI populations over-
lap at Kaua’i, they have never been sighted together.

A previous genetic study comparing the MHI and off-
shore populations revealed strong phylogeographic structur-
ing of  haplotypes within North Pacific false killer whales, 
with animals from the MHI population possessing closely 
related haplotypes not found elsewhere in the Pacific (Chivers 
et  al. 2007). In this study, we use a substantially expanded 
sample set, including samples from the previously unsampled 
NWHI, and data from both mitochondrial control region 
sequences and 16 microsatellite loci to further investigate 
population structure in North Pacific false killer whales. We 
compare the patterns of  genetic differentiation among the 
MHI, NWHI, and offshore populations as revealed by the 2 
marker types to gain insight into the colonization history of  
the Hawaiian Archipelago and the social structure and pat-
terns of  gene flow among these populations. We then com-
pare the habitat characteristics of  the MHI versus the NWHI 
to examine the factors that may have driven the evolution 
of  island-associated populations in this otherwise offshore 
species.

Materials and Methods
The Samples

The sample set consisted of  276 tissue samples collected 
from false killer whales biopsied at sea (n = 271 including 11 
sampled by observers during long-line fishing operations), in 
captivity (n = 3), or stranded on the beach (n = 2) between 
1983 and 2011 (Figures 1 and 2). All tissue samples (i.e., skin 
or muscle) were preserved frozen or in a 20% dimethylsul-
foxide solution saturated with NaCl (Amos and Hoelzel 1991; 
Amos 1997) and archived in the Southwest Fisheries Science 
Center’s (SWFSC) Marine Mammal and Turtle Molecular 
Research Sample Collection.
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Figure 1.  Collection locations of  false killer whale samples. The groupings referred to in Table 2 and Figure 3 are indicated, with 
the exception that “East Pacific” in Figure 3 refers to the ETP stratum plus one encounter (2 samples) south of  the ETP. The CNP 
stratum consists of  all samples within the ellipse except for those included in the MHI and NWHI strata (see Figure 2). Sample sizes 
are listed for the mtDNA data set followed by the nucDNA data set. Only the MHI, NWHI, CNP, and ETP strata are included in 
most analyses.

Figure 2.  Collection locations of  false killer whale samples around the Hawaiian Archipelago. Ellipses indicate the samples 
included in the NWHI and MHI strata. All other samples on this map are part of  the CNP stratum. Sample sizes for the 
mtDNA/nucDNA data set are indicated. Solid gray lines show the boundaries of  the Hawai’i and Palmyra (bottom center) EEZs. 
The dashed gray line shows the boundary of  the Papahānaumokuākea Marine National Monument.
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We focused our analyses on samples from the eastern 
North Pacific, as that is the area from which the majority of  
our samples were collected. We divided the eastern North 
Pacific into 4 strata—the MHI, NWHI, Central North 
Pacific (CNP), and Eastern Tropical Pacific (ETP; Figure 1). 
The CNP and ETP were delineated based on oceanographic 
and biogeographic features (Reilly 1990; Longhurst 1998), as 
well as on sample distribution, whereas the MHI and NWHI 
strata were delineated based primarily on photo-identifica-
tion and satellite tag data. The MHI stratum was defined as 
all samples collected from groups containing any individuals 
that were part of  the Hawai’i insular social network, as deter-
mined by analyses of  the photo-identification catalog and 

association pattern data (Baird et al. 2008, 2012). The NWHI 
stratum contains individuals from 4 encounters (Table 1), all 
of  which occurred very close to islands or atolls. Three of  
these encounters involved a satellite-tagged individual that 
remained close to the NWHI during the entire 52-day tag 
duration (Baird et al. 2013). There were also multiple photo-
identification matches among these encounters and between 
them and individuals encountered off  of  Kaua’i in 2008, sug-
gesting multiyear fidelity to the Hawaiian Archipelago (Baird 
et al. 2013). None of  the individuals from these encounters 
nor from the encounter off  of  Kaua’i in 2008, link to the 
MHI social network. The fourth NWHI encounter was not 
linked photographically or through satellite tag data to the 

Table 1  Characteristics of  the false killer whale groups with multiple samples collected

Encounter  
number

Samples  
collected

Samples  
sequenced

Unique  
individuals

Final  
sample 
size Collection date Haplotype

CNP
  1 3 3 3 3 21 April 2008 9, 25
  2 4 4 3 3 10 November 2010 32
  3 6 4 4 4 18 August 2005 7, 9
  4 4 4 3 3 1 September 2010 9
  5 5 5 4 4 10 September 2010 30
ETP
  6 5 5 4 4 24 August 1998 9
  7 15 15 12 12 14 November 2000 9, 10
  8 7 6 3 2 21 August 2003 11
  9 13 13 13 8 14 November 1999 10
  10 3 3 3 2 7 October 2000 12
NWHI
  11 9 9 8 8 26 September 2010 1, 31
  12 5 5 4 4 7 October 2010 1
  13 11 11 8 6 21 October 2010 1, 31
MHI
  14 7 7 7 7 30 September 2002 1, 2
  15 3 3 2 2 13 September 2004 1
  16 12 12 10 10 7 August 2005 1, 2, 5
  17 7 7 6 6 16 July 2008 1, 2
  18 4 4 4 4 26 July 2008 1, 2
  19 4 4 2 2 18 December 2009 1, 2
  20 7 7 6 6 19 December 2009 1
  21 3 3 1 1 28 July 2010 1, 2
  22 7 7 6 6 11 August 2010 1, 2
  23 6 6 4 4 14 August 2010 1, 2
  24 12 12 10 10 20 August 2011 1, 2
  25 5 5 2 2 25 August 2011 1, 2
  26 4 4 2 2 9 December 2000 1, 2
  27 3 3 2 2 21 December 2000 1
  28 6 6 6 6 28 February 2001 1, 2
  29 4 4 2 2 1 May 2002 1
  30 22 22 18 18 26 May 2003 1
  31 3 3 2 2 15 October 2010 1
  32 5 5 5 5 10 December 2009 1
American Samoa 4 4 4 4 7 October 2006 17
Australia 3 3 3 3 23 November 2009 5
Southwest Pacific 3 3 2 2 15 October 2006 28

The columns show the total number of  biopsy samples collected from the group (“Samples collected”), the number successfully sequenced (‘Samples 
sequenced’), the number of  “Unique individuals” once replicates (including those sampled in previous encounters) were removed, the “Final sample size” 
after closely related individuals were removed, the date of  the encounter, and the haplotypes detected in the group. The name of  the stratum to which each 
group belongs is identified under each regional heading.
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other NWHI encounters. However, because this encounter 
occurred within the known range of  the NWHI population 
(based on satellite tag data; Baird RW, unpublished data) 
and all 4 individuals from this encounter possessed haplo-
types only found among the MHI and NWHI samples (see 
Results), they were included in the NWHI stratum.

Baird et  al. (2012) used a social network derived from 
photo-identification data and an analysis of  network modu-
larity to identify social clusters within the MHI population. 
They identified 3 large social clusters (clusters 1, 2, and 3), 
as well as 4 small, peripheral clusters primarily composed of  
animals only sighted once. For some analyses, we stratified 
the MHI population according to the social clusters identified 
by Baird et al. (2012). For these analyses, we only included 
samples from Baird et  al.’s clusters 1, 2, and 3 due to the 
uncertainty associated with their other clusters and the small 
number of  samples available from them. We also excluded 
samples from individuals that were not photographically 
identified, as they were not included in Baird et  al.’s social 
cluster analysis.

Laboratory Processing

The 5′ end of  the hypervariable mtDNA control region was 
amplified from extracted genomic DNA (lithium chloride 
protocol: Gemmell and Akiyama 1996; sodium chloride pro-
tocol: Miller et al. 1988; Qiagen DNeasy Blood and Tissue 
Kit #69506) using the polymerase chain reaction (PCR) 
and then sequenced using standard techniques (Saiki et  al. 
1988; Palumbi et  al. 1991). The PCR cycling profile con-
sisted of  90 °C for 2.5 min, followed by 35 cycles of  94 °C 
for 50 s, an annealing temperature of  60  °C for 50 s, and 
72 °C for 1.5 min, then a final extension of  72 °C for 5 min. 
The sequence was generated in 2 parts, each of  which was 
sequenced in both directions using Applied Biosystems 
Inc. (ABI, Foster City, CA) model 377, 3100 and 3730 
sequencers. For the 5′ segment, we used primers H16498 
(5′-CCTGAAGTAAGAACCAGATG-3′) (Rosel et al. 1994) 
and L15829 (5′-CCTCCCTAAGACTCAAGG-3′) (devel-
oped at the SWFSC), and for the 3′ segment, we used prim-
ers H497 (5′-AAGGCTAGGACCAAACCT-3′) and L16218 
(5′-TGGCCGCTCCATTAGATCACGAGC-3′) (both devel-
oped at the SWFSC). The 3′ segment of  approximately 573 
base pairs included an approximately 20–base-pair section 
of  overlap with the first 395 base pairs of  the 5′ segment 
to ensure all sequences were complete. The final sequences 
were 947 base pairs long and were aligned using SEQED, 
version 1.0.3 (ABI) and Sequencher software (versions 4.1 
and 4.8; Gene Codes, Ann Arbor, MI).

Samples were genotyped using microsatellite DNA prim-
ers for 16 dinucleotide loci: D12t derived from beluga whales 
(Delphinapterus leucas) (Buchanan et  al. 1996), EV1t and 
EV14t derived from sperm whales (Physeter macrocephalus), 
EV94t derived from humpback whales (Megaptera novaenglia) 
(Valsecchi and Amos 1996), KWM2at, KWM2b, and 
KWM12at derived from killer whales (Orcinus orca) (Hoelzel 
et al. 1998), SW19t derived from sperm whales (Richard et al. 
1996), SL125t and SL1026t derived from spinner dolphins 

(Stenella longirostris) (Galver 2002), and TexVet5t (Rooney et al. 
1999), Ttr11, Ttr34, Ttr48, Ttr58, and TtrRC11 (Rosel et al. 
2005) derived from common bottlenose dolphins (Tursiops 
truncatus). Extracted DNA was amplified using published 
protocols (Martien et al. 2012). The PCR thermal cycling pro-
file for these primers was 90 °C for 2.5 min, followed by 35 
cycles of  94 °C for 45 s, 1 min at annealing temperature, and 
72 °C for 1.5 min, then a final extension of  72 °C for 5 min. 
The optimal annealing temperatures were 48 °C for KWM2at 
and KWM2b, 50 °C for KWM12at, 54 °C for EV14t, 55 °C 
for D12t, EV1t, EV94t, SL125t, SL1026t, SW19t, TexVet5t, 
Ttr11, and TtrRC11, 57 °C for Ttr34 and Ttr48, and 60 °C 
for Ttr58.

Size and purity of  the amplicon were assessed electro-
phoretically. Genotype data were generated on ABI genetic 
analyzers (models 3100 and 3730)  using a commercial 
internal lane standard (ROX500®; PE Applied Biosystems 
Inc.). ABI’s GENEMAPPER (version 4.0) software was 
used to make preliminary allele fragment size “calls.” 
GENEMAPPER’s calls were reviewed and, if  necessary, 
manually edited to finalize calls. Data generated on the ABI 
3100 were normalized from runs of  a set of  samples on the 
ABI 3730 using the program Allelogram (Morin et al. 2009b). 
The size of  each allelic pair for each locus constituted the raw 
data for analyses.

Samples were genetically sexed using the zinc finger (ZFX 
and ZFY) genes. Prior to 2005, sex determinations were 
completed according to Fain and LeMay (1995). After 2005, 
a Real-Time PCR (Stratagene, La Jolla, CA) assay was used as 
described in Morin et al. (2005).

Data Review

Ten percentage of  the sample set, chosen at random, was 
replicated for each marker during data generation, and these 
records were reviewed for consistency in allele size scoring. 
Discrepancies between replicate genotypes were used to cal-
culate the per-allele error rate. After data generation had been 
completed, all allele size calls were reviewed by a second, 
independent genotyper. Inconsistencies between the original 
data set and that generated by the independent genotyper 
were jointly reviewed by both genotypers and treated as miss-
ing data if  unresolvable.

Prior to analyses, the final nucDNA data set was reviewed 
for quality (Morin et al. 2010). Samples that could not be con-
sistently replicated, were missing data for >25% of  the mark-
ers, or were homozygous at 9 or more loci were deemed to be 
of  poor quality and removed from the data set. The program 
MICROCHECKER (version 2.2.3; Van Oosterhout et  al. 
2004) was used to examine the markers for allelic dropout 
and null alleles. Deviation from Hardy–Weinberg equilib-
rium (HWE) was assessed for each microsatellite locus using 
exact tests of  HWE (Guo and Thompson 1992) and tests 
for heterozygote deficiency (Raymond and Rousset 1995), 
as implemented in GENEPOP version 4 (Rousset 2008). 
The same software was used to evaluate linkage disequilib-
rium for each pair of  loci using Fisher’s method and the 
Markov chain method. All HWE and linkage disequilibrium 
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tests were conducted using 1000 dememorization steps, 100 
batches, 1000 iterations per batch. The tests were conducted 
separately for each geographic stratum and combined across 
strata to calculate a global P value for each locus (Fisher 
1935). The jackknife procedure described in Morin et  al. 
(2009a) was used to identify samples that were highly influ-
ential (i.e., log-odds greater than 2) in deviations from HWE. 
The genotypes identified by the jackknife procedure were 
removed from the data set.

We used the program GenAlEx version 6.4 (Peakall 
and Smouse 2006) to calculate both the probability that 
2 randomly chosen individuals would possess the same 
multilocus genotype (PI) and the probability that full sib-
lings would share the same genotype (PISibs; Taberlet 
and Luikart 1999). Pairs of  samples that matched in sex, 
mtDNA haplotype, and microsatellite genotype were con-
sidered duplicate samples. When available, photo-identifica-
tion data were also used to identify duplicate samples from 
the same individual. The program DROPOUT (McKelvey 
and Schwartz 2005) was used to identify additional pairs of  
samples whose genotypes differed at 4 or fewer loci. These 
pairs could represent duplicate samples with genotyping 
errors. One sample from each duplicate pair was removed 
prior to analysis.

Two hundred twenty-four of  the samples came from 
36 groups (sensu Baird et  al. 2008) from which 3 or more 
samples were collected (Table  1). Due to the strong social 
structure in false killer whales (Baird et al. 2008, 2012), tak-
ing multiple samples from the same group could result in 
sampling closely related individuals, which could bias our 
sample. Such a bias is not a concern in the MHI, where 
nearly 70% of  the population has been sampled. However, 
such a bias is possible in the other strata and could lead 
some of  our analyses to overestimate the amount of  popula-
tion structure within our data (Rodríguez-Ramilo and Wang 
2012). We therefore compared relatedness within and among 
groups from all of  our sampling strata other than MHI in 
order to determine whether the groups are more related than 
expected. Using the program GenAlEx v. 6.41 (Peakall and 
Smouse 2006), we calculated Queller and Goodnight’s (1989) 
relatedness within each group and compared it to the dis-
tribution of  values expected if  the individuals in the group 
had been drawn at random from the allele frequencies for 
their sampling stratum. For groups that were significantly 
more related than expected, we identified the individual that 
had the highest average relatedness to the other members of  
the group and removed that individual from the data set. We 
then iteratively reran the relatedness analyses to determine 
whether the remaining samples were still more closely related 
than expected, removing samples one at a time as required, 
until the mean within-group relatedness was not significantly 
higher than expected.

We reviewed the haplotype data published by Chivers 
et al. (2007) to ensure data quality. All samples with unique 
haplotypes (i.e., not present in any other sample) were rese-
quenced 2 or more times to confirm the sequence. We sub-
mitted all sequence data to GenBank and all microsatellite 
genotypes to Dryad for archival purposes.

Analyses of Genetic Data

Genetic Diversity

We identified haplotypes and quantified genetic variability 
in terms of  haplotypic diversity (h) and nucleotide diversity 
(π) using ARLEQUIN, version 3.11 (Excoffier et al. 2005). 
For the MHI stratum, we also used ARLEQUIN to calcu-
late Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997) to look 
for evidence of  population expansion or a bottleneck. For 
the nucDNA data set, we used custom code (available upon 
request) written in R (R Development Core Team 2011) to 
calculate the number of  alleles per locus, as well as observed 
and expected heterozygosity, and FSTAT (Goudet 2001) to 
calculate allelic richness.

To select the most appropriate nucleotide substitu-
tion model, we used Akaike information criterion (Akaike 
1974) and Bayesian information criterion (Schwarz 1978) 
with jModelTest version 2.1.1 (Guindon and Gascuel 2003; 
Darriba et al. 2012). We looked for phylogeographic patterns 
in the mtDNA data by generating a median joining network 
using the algorithm of  Bandelt et al. (1999), implemented in 
the software package Network 4.5.1.0 (available from http://
www.fluxus-engineering.com/sharenet.htm). We used the 
Maximum Parsimony option (Polzin and Daneschmand 
2003) to identify and eliminate unnecessary median vectors 
and links and the Star Contraction option (Forster et al. 2001) 
to simplify the final network for easier visualization. The final 
network was compared to one without star contraction (data 
not shown) to ensure that star contraction did not alter or 
obscure any phylogenetic patterns.

Genetic Differentiation

We conducted both global and pairwise tests of  the null 
hypothesis of  no population structure among strata by 
conducting a global Fisher’s Exact test of  differentiation 
(Raymond and Rousset 1995), as implemented in ARLEQUIN 
(Excoffier et al. 2005), for the mtDNA sequence data set and 
using a χ2 test (Roff  and Bentzen 1989) for the nucDNA 
data set. The χ2 test was implemented using custom code 
written in R (available upon request). Statistical significance 
was determined from 10 000 random permutations of  each 
data set, with α = 0.05. A correction for multiple tests was 
not applied to interpret results because each test was test-
ing an independent hypothesis. Corrections for multiple tests 
effectively reduce the critical value (α), or Type I error rate, 
at the expense of  the Type II error rate (Perneger 1998). 
Consequently, inappropriate application of  correction fac-
tors can have serious conservation management implications.

Pairwise estimates of  genetic differentiation between strata 
were also calculated using ΦST for the mtDNA sequence data, 
and both FST (Wright 1931; Weir and Cockerham 1984) and 
F′ST (Meirmans 2006) for the nucDNA microsatellite data. 
ΦST was calculated using the program Arlequin (Excoffier 
et  al. 2005), with the genetic distances between haplotypes 
calculated using the nucleotide substitution model selected 
by the jModelTest analysis. FST and F′ST were calculated using 
custom code written in R (available upon request).
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We tested for evidence of  sex-biased dispersal in the micro-
satellite data set using the biased dispersal test of  Goudet et al. 
(2002), as implemented in FSTAT (Goudet 2001). This test 
looks for evidence of  first-generation immigrants within a 
sample. We examined differences between males and females 
with respect to mean and variance of  assignment indices, FIS, 
FST, relatedness, and within-group gene diversity (HS) and 
assessed significance through 1000 permutations. To test for 
evidence of  sex-biased dispersal within the mtDNA data set, 
we used custom R code (available upon request) to create an 
mtDNA implementation of  the same sex-biased dispersal test 
used for the microsatellite data set. For the mtDNA data set, 
we only compared FST values between males and females, and 
again assessed significance through 1000 permutations.

We used the Bayesian clustering program Structure 2.3.3 
(Pritchard et  al. 2000; Falush et  al. 2003; Hubisz et  al. 2009) 
to cluster all samples collected from the central and eastern 
Pacific Ocean (i.e., samples from Japan and Southeast Asia were 
excluded) on the basis of  their microsatellite genotypes. We had 
Structure cluster the samples into k = 1–6 groups and ran 
Structure 5 times for each k. To confirm convergence, we com-
pared estimates of  likelihood and ancestry across runs. We eval-
uated support for different values of  k by comparing the mean 
log-likelihood for each model and by calculating ∆K (Evanno 
et al. 2005). All analyses were run for 1 000 000 steps following 
a burn-in of  50 000 and assumed an admixture model with cor-
related frequencies. All other parameters were left at program 
defaults. We used CLUMPP (Jakobsson and Rosenberg 2007) to 
average the ancestry coefficients of  individuals across replicate 
runs and graphed the results with Distruct (Rosenberg 2004).

We stratified the samples from the central and eastern 
Pacific according to the groups identified by Structure and 
used the program GeneClass2 (Piry et al. 2004) to conduct 
an assignment test. Though Structure can also be used for 
assignment tests, GeneClass2 has the advantage that, in addi-
tion to identifying the most likely source of  a sample, it can 
identify source populations that can be excluded as the source 
of  a sample. We used the assignment criterion of  Paetkau 
et al. (1995) to calculate the likelihood of  each sample having 
originated in each stratum and used Paetkau et  al.’s (2004) 
resampling method to determine whether any of  the strata 
could be excluded as the potential source of  each sample. 
We used L_home as the likelihood value, as it is possible that 
some individuals could have originated in unsampled source 
populations. For all analyses, we set the default frequency for 
missing alleles at 0.01, performed 1000 resampling events, 
and set the α to 0.01 as recommended by Piry et al. (2004).

To test for evidence of  isolation-by-distance we used 
GenAlEx6 (Peakall and Smouse 2006) to calculate the gen-
otypic (Peakall 1995; Smouse and Peakall 1999) and geo-
graphic distance between all pairs of  individuals and conduct 
a Mantel test. We conducted the test within each of  our 4 
North Pacific strata (Figures 1 and 2), within the groups iden-
tified by Structure, and within the entire eastern and central 
Pacific combined. We assessed the significance of  the Mantel 
Tests through 999 permutations.

We used the nucDNA data set and the program Migrate 
3.6.4 (Beerli 2006) to estimate the mutation-scaled effective 

population sizes (Θ = 4Neμ) and asymmetric mutation-scaled 
dispersal parameters (M = m/μ) between our 4 North Pacific 
strata. We used a Bayesian search strategy with 8 replicate 
chains, each consisting of  a 100 000 step burn-in followed 
by a 2 500 000 step chain that was sampled every 100 steps. 
For Θ we used a uniform prior from 0 to 100 with a window 
of  25, whereas for M we used a windowed exponential prior 
with minimum of  0, mean of  500, maximum of  1000, and 
sampling window of  250. The priors were chosen based on 
preliminary runs and sampled via Slice Sampling. Chain con-
vergence was confirmed through estimates of  effective sam-
ple size and by comparing results across 3 independent runs.

Results
Data Review

The probability of  2 individuals possessing the same multilo-
cus genotype was 1.23 × 10−18 for unrelated individuals and 
2.70 × 10−7 for full siblings, indicating that the microsatellite 
loci were adequate for identifying unique individuals. Using 
available photographs and genotypes from the 16 nucDNA 
markers, 51 duplicate samples from 44 individuals were iden-
tified and removed prior to analyses. In all cases, duplicate 
samples of  a given individual were sampled within the same 
stratum. In addition to the removal of  duplicate samples, 11 
samples were eliminated from the mtDNA analysis and 22 
samples from the nucDNA analysis due to poor sample qual-
ity. Encounters 9, 10, and 13 (Table 1) exhibited significantly 
higher within-encounter relatedness than the other encoun-
ters. We eliminated 5, 1, and 2 samples from these encoun-
ters, respectively, to reduce the within-group relatedness to 
the point where it was no longer significantly higher than 
expected. After these exclusions, the data sets used for all 
summary statistics and analyses included 206 samples in the 
mtDNA data set and 195 samples in the nucDNA data set.

Two samples were identified in the HWE jackknife analy-
sis as having likely genotyping errors. Both were homozygous 
for rare alleles, one at locus D12t and one at locus Ttr11. The 
genotypes of  these samples at these loci were set to null for 
all analyses.

Locus D12t was out of  HWE in the MHI stratum and 
EV94t was out of  HWE in the CNP stratum (Supplementary 
Table 1 online). No other deviations were detected for any 
other loci in the MHI or CNP strata, and no deviations 
were detected for any loci in the other strata. The Fisher’s 
Exact test for linkage disequilibrium across populations was 
significant for 8 pairs of  loci: SW19t/Ttr48, EV94t/Ttr58, 
SL1026t/TtrRC11, EV94t/KWM2at, KWM2at/SL1026, 
KWM2at/Ttr58, KWM2b/SL125t, and EV14t/TexVet5t. 
Most of  the linkage disequilibrium was found in the MHI 
stratum, with only 3 locus pairs deviating significantly from 
linkage disequilibrium in 2 strata. None were significant for 
more than 2 strata. Deviations from HWE and linkage equi-
librium are not unexpected in a small population from which 
more than half  of  the individuals have been sampled, like 
the MHI insular false killer whales. Thus, all markers were 
retained.
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Twenty-four samples were randomly chosen for replica-
tion. These samples were genotyped an average of  2.1 times 
at each nuclear locus, for a total of  1380 allele calls. Eighteen 
errors were detected, resulting in a per-allele error rate of  0.013. 
Resequencing of  samples revealed errors in some of  the Chivers 
et al. (2007) sequences and resulted in the elimination of  7 hap-
lotypes: 3, 4, 8, 13, 14, 15, and 22 (numbers correspond to the 
haplotype numbers in Chivers et al. Figure 4b). Thus, there were 
17 rather than 24 haplotypes among the samples included in 
that study. The numbers assigned to those haplotypes were not 
reused. Furthermore, we identified 2 errors that had resulted 
in Chivers et  al. concluding that one animal sampled around 
Palmyra possessed haplotype 2 and one animal sampled around 
the MHI had haplotype 9 (see Chivers et al. 2007; Figure 3). In 
fact, the haplotypes of  those individuals were reversed.

Genetic Diversity

We identified 25 haplotypes among the 206 mtDNA 
sequences representing individual animals in the data set 
(Table  2), including 8 additional haplotypes (haplotypes 
25–32) identified among the samples added to the Chivers 
et  al. (2007) data set. There were 32 polymorphic sites 

including 30 substitutions (29 transitions and 1 transversion) 
and 2 insertions/deletions in the 947 base-pair sequences. 
The best-fit substitution model was the Tamura and Nei 
(1993) model with invariant sites (TrN+I). The observed 
nucleotide diversity was low (i.e., π = 0.32%; Table 3) com-
pared with most other delphinids (e.g., spotted dolphins, 
Escorza-Trevino et  al. 2005; bottlenose dolphins, Martien 
et al. 2012), but comparable to estimates from other closely 
related species such as killer whales and pilot whales (Hoelzel 
et al. 1998; Oremus et al. 2009). Overall haplotypic diversity 
was 0.740 (± 0.028; Table 3). For the MHI stratum, neither 
Tajima’s D (D = −0.579, P = 0.324) nor Fu’s Fs (Fs = 2.212, 
P  =  0.872) provided evidence of  population expansion or 
bottleneck, as neither was significantly different from zero.

We detected more than one haplotype in 17 of  the 35 groups 
where 3 or more individuals were sampled (Table 1). In all but 3 
of  these cases (encounters 1, 14, and 19), both haplotypes were 
detected in females, confirming that groups encountered in the 
field are not strictly matrilineal (Chivers et al. 2007).

Observed heterozygosity and allelic richness for the 16 
nucDNA markers were similar across all strata (Table 3). The 
number of  alleles detected at the different loci ranged from 5 
(Ttr34) to 16 (TtrRC11; Supplementary Table 1 online).

Figure 3.  Median joining network of  all false killer whale haplotypes. Nodes are color-coded according to the geographic 
region from which they were sampled (see Figure 1). The size of  nodes is proportional to the frequency of  the haplotype. Small 
white circles represent haplotypes inferred by the analysis but not present in our data set. Lengths of  lines connecting nodes are 
proportional to the inferred number of  mutations separating haplotypes. Small red numbers above the lines indicated the number 
of  mutational events, if  greater than one.

 at U
niversity of W

ashington on M
ay 16, 2014

http://jhered.oxfordjournals.org/
D

ow
nloaded from

 

http://jhered.oxfordjournals.org/lookup/suppl/doi:10.1093/jhered/esu029/-/DC1
http://jhered.oxfordjournals.org/


Martien et al. • False Killer Whale Population Structure

9

Phylogeographic Structure

Phylogeographic concordance is evident in the distribution of  
haplotypes (Figure 3). The 2 Atlantic Ocean samples cluster 
together in the median joining network and are 10 nucleotide 
substitutions from the nearest Pacific haplotypes. The 3 hap-
lotypes from the MHI and NWHI (1, 2, and 31) also cluster 
together. Haplotypes from the South Pacific, Southeast Asia, 
and Japan also appear near each other on the median joining 
network, but are more similar to the east Pacific and central 
North Pacific haplotypes than are the Hawaiian haplotypes.

One group (encounter 16, Table 1) sampled off  the island 
of  Hawai’i included a male with haplotype 5, a haplotype 
also identified from animals sampled off  Northern Australia. 
This was the only animal associated with either of  the island-
associated populations that possessed a haplotype found 
elsewhere in the Pacific. This animal was photographed and 
judged “distinctive” (meaning it would be readily identifi-
able in subsequent photographs), but has never again been 
sighted (Baird RW, unpublished data). Of  the 10 individuals 
photographically identified from this group, the individual 
with haplotype 5 is the only one that has not been resighted.

Genetic Differentiation

We found evidence of  statistically significant genetic dif-
ferentiation among strata. Global tests of  differentiation 

revealed significant (P < 0.0001) genetic divergence between 
strata overall in both the mtDNA and nucDNA data sets, 
rejecting the global null hypothesis of  no population struc-
ture. All pairwise comparisons among geographic strata 
were statistically significant in both data sets (Table  4). In 
the mtDNA data set, genetic divergence (ΦST) between the 
MHI and NWHI (ΦST = 0.131) was similar to that between 
the CNP and ENP (ΦST = 0.091), whereas divergence values 
between the island-associated strata and the offshore strata 
were much higher, ranging from 0.618 to 0.709 (Table 4). In 
the nucDNA data set, in contrast, divergence values were 
much smaller and similar across all comparisons, with FST 
estimates ranging from 0.012 to 0.031 (Table 4). The lowest 
divergence values calculated from the nucDNA data set were 
from the 3 comparisons involving the CNP. No evidence for 
sex-biased dispersal was detected in either data set using the 
bootstrap analysis.

We also found significant genetic differentiation among 
the social clusters within the MHI population (Table 4). In 
the mtDNA data set, clusters 1 and 2 were not significantly 
differentiated from each other, though both were signifi-
cantly differentiated from cluster 3. This result was driven by 
the fact that haplotype 2, while at frequencies of  0.441 and 
0.417 in clusters 1 and 2, respectively, was completely absent 
from cluster 3.  In the nucDNA data set, estimates of  FST 
ranged from 0.008 to 0.012 (Table 4).
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Figure 4.  Graphical representation of  Structure results for models containing (a) 2 and (b) 3 groups. Each vertical bar 
represents an individual and is shaded as to the proportion of  the individual’s ancestry that is attributable to groups 1 (orange), 2 
(blue), and 3 (purple), as defined by Structure. MHI samples are divided into the 3 social clusters identified by Baird et al. (2012) 
as well as those samples for which social cluster affiliation is unknown. The remaining ndividuals are arranged into the strata 
indicated on Figures 1 and 2. ‘S. of  ETP’ refers to 2 samples collected south of  our ETP stratum.  at U
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The Structure analyses also detected genetic structure 
within the North Pacific. The highest mean log-likelihood 
and highest ∆K occurred when the samples were divided 
into 3 groups (Supplementary Table 2 online). However, the 
mean log-likelihood for the model with 2 groups was only 
slighter lower. In the model with 2 groups, the MHI sam-
ples derived an average of  15% of  their ancestry from group 
1 and 85% from group 2, whereas the remaining samples 
derived an average of  89% of  their ancestry from group 1 
and only 11% from group 2 (Figure 4). Increasing the num-
ber of  groups to 3 had little effect on the assignment of  non-
MHI samples, but resulted in the MHI samples being split 
between groups 2 and 3 (Figure 4). The assignment of  MHI 

samples to groups 2 and 3 did not vary significantly between 
the social clusters (Anova of  logit-transformed assignment 
probabilities, P value  =  0.101). When we used Structure 
to analyze the MHI and non-MHI samples separately, the 
model with only one group was strongly supported in both 
cases, indicating that there is no population structure detecta-
ble by Structure within either of  the 2 groups. We therefore 
conclude that the model with 2 groups provides the best fit 
to our data. We henceforth refer to the 2 groups identified by 
Structure as the MHI (which is identical to the MHI stra-
tum used in other analyses; Figure 4), and the Eastern Pacific, 
which includes all samples used in the Structure analyses 
except those from the MHI.

Table 3  Estimates of  genetic diversity of  false killer whales for the mtDNA and nucDNA data sets for the 4 CNP and eastern North 
Pacific strata, MHI social clusters, and for all samples

Stratum mtDNA nucDNA

n Nh H π n NA Ho He AR

MHI 107 3 0.395 ± 0.043 0.0009 ± 0.0007 102 7.69 ± 2.24 0.744 ± 0.153 0.746 ± 0.144 6.34 ± 1.56
NWHI 19 2 0.105 ± 0.092 0.0001 ± 0.0002 19 6.75 ± 2.49 0.789 ± 0.177 0.741 ± 0.165 6.68 ± 2.84
CNP 27 8 0.712 ± 0.085 0.0030 ± 0.0018 26 7.88 ± 2.90 0.733 ± 0.152 0.764 ± 0.132 7.32 ± 2.52
ETP 33 6 0.676 ± 0.052 0.0022 ± 0.0014 31 8.50 ± 2.78 0.752 ± 0.144 0.756 ± 0.134 7.43 ± 2.18
Cluster1 34 2 0.508 ± 0.029 0.0011 ± 0.0008 34 6.50 ± 1.90 0.741 ± 0.143 0.731 ± 0.146 5.59 ± 1.44
Cluster2 24 3 0.554 ± 0.053 0.0014 ± 0.0010 23 6.50 ± 1.75 0.753 ± 0.169 0.751 ± 0.157 5.83 ± 1.57
Cluster3 23 1 0.000 ± 0.000 0.0000 ± 0.0000 23 6.38 ± 1.54 0.740 ± 0.198 0.745 ± 0.134 5.70 ± 1.18
All samples 206 25 0.740 ± 0.028 0.0032 ± 0.0019 195 10.56 ± 3.50 0.744 ± 0.136 0.761 ± 0.142 10.47 ± 3.44

Allelic richness was calculated using a minimum sample size of  18 for the geographic strata, 12 for the social clusters, and 168 for all samples.

Table 2  Haplotype frequencies for all false killer whales after replicates were removed

Haplotype MHI NWHI CNP ETP
South  
Pacific

West  
Pacific

Indo- 
Pacific

Indian  
Ocean

Atlantic  
Ocean

1 (EF601197) 79 18
2 (EF601198) 27
5 (EF601201) 1 3
6 (EF601204) 1
7 (EF601202)) 1
9 (EF601207) 14 14
10 (EF601208) 13
11 (EF601209) 2
12 (EF601210) 2
16 (EF601205) 1
17 (EF601206) 5
18 (EF601216) 1
19 (EF601217) 1
20 (EF601218) 1
21 (EF601214) 2
23 (EF601219) 1
24 (EF601220) 1
25 (HQ438483) 2
26 (HQ438484) 1 2
27 (HQ438485) 1
28 (HQ438486) 2
29 (HQ438487) 1
30 (KJ567087) 4
31 (KJ567088) 1
32 (KJ567089) 3 1

Column names correspond to the strata indicated in Figures 1 and 2. GenBank accession numbers are given in parentheses.

 at U
niversity of W

ashington on M
ay 16, 2014

http://jhered.oxfordjournals.org/
D

ow
nloaded from

 

http://jhered.oxfordjournals.org/lookup/suppl/doi:10.1093/jhered/esu029/-/DC1
http://jhered.oxfordjournals.org/


Martien et al. • False Killer Whale Population Structure

11

Based on the assignment test conducted with GeneClass2, 
the proportion of  samples assigning most strongly to the 
source population from which they were collected was 0.931 
(95/102) for the MHI samples and 0.867 (78/90) for the 
Eastern Pacific samples. There was one sample from each 
population for which the population where it was collected 
could be excluded as a possible source. One of  these was 
a sample collected in the Eastern Pacific for which both 
putative source populations could be excluded. The Eastern 
Pacific could be excluded as a possible source for 5% (5/102) 
of  the MHI samples, whereas the MHI could be excluded as a 
possible source for 37% (33/90) of  the Eastern Pacific sam-
ples. One of  the MHI samples that assigned more strongly 
to the Eastern Pacific population was the individual that pos-
sessed haplotype 5, which was also found in Australia. That 
individual had an exclusion probability from the MHI of  
0.027, slightly higher than the critical value of  0.01 used to 
identify migrants.

We did not find evidence of  isolation-by-distance within 
the MHI, NWHI, CNP, or ETP strata, nor did we find iso-
lation-by-distance when we combined all of  these strata. 
However, when we excluded the MHI samples and analyzed 
all other samples from the Eastern Pacific, we did find sta-
tistically significant (P = 0.002) evidence of  isolation-by-dis-
tance, with geographic distance accounting for 6.9% of  the 
variation in genetic distance between individuals.

The migration parameters estimated by Migrate had 
broadly overlapping 95% confidence intervals, all of  which 
included zero (Supplementary Figure 1 online). Similarly, the 
estimates of  Θ produced by Migrate had overlapping con-
fidence intervals that included zero (Supplementary Figure 2 
online). The estimates therefore did not provide any insight 
into the relative sizes of  or rates of  dispersal between our 4 
North Pacific strata.

Discussion
Patterns of Differentiation

Our analyses of  both mitochondrial and nuclear genetic vari-
ation revealed limited gene flow between populations within 
the North Pacific, including between the 2 island-associated 
populations in the Hawaiian Archipelago. mtDNA suggests 

strong maternally based fidelity to populations, and even to 
social clusters within populations. The phylogeographic pat-
tern suggests that the MHI and NWHI populations have a 
common colonization history and that they have been closed 
to immigration from the offshore realm for long enough to 
evolve new haplotypes in situ. The fact that the populations 
share their most common haplotype but that each population 
has its own unique haplotype, each apparently derived from 
the common haplotype, suggests that the 2 island-associated 
populations may have been isolated from each other for a 
long time as well. Haplotype frequencies differ significantly 
between the MHI and NWHI populations. However, this 
result is due to the absence of  haplotype 2 from the NWHI 
population. Nothing is known regarding the social struc-
ture of  the NWHI population. If  it is comprised of  distinct 
social clusters, like the MHI population (Baird et al. 2012), it 
is likely that most of  our NWHI samples come from a sin-
gle social cluster since they were collected from encounters 
that are linked by association (Baird et al. 2013). Given that 
the mtDNA differentiation between the NWHI and MHI 
populations is comparable to that seen between social clus-
ters in the MHI population, more samples are needed from 
the NWHI population to confirm the absence of  haplotype 
2 from that population and allow more robust estimation of  
the level of  mtDNA differentiation between it and the MHI 
population.

The nuclear data set  also indicates limited gene flow 
between the MHI and NWHI populations, with the NWHI 
animals representing a separate population. The Structure 
analyses strongly supported the separation of  the MHI and 
NWHI, but fail to identify the social clusters within the MHI, 
indicating that differentiation between the MHI and NWHI 
populations is considerably greater than between MHI social 
clusters. The difference in allele frequencies between these 
2 populations was highly significant. The FST and F′ST esti-
mates between them were among the highest of  any com-
parison we made and were approximately 3 times larger than 
the estimates between MHI social clusters (Table 4).

In contrast to the phylogeographic structure revealed by 
the mtDNA data set, analyses of  the nuclear data set that did 
not require a priori stratification of  the samples suggest that 
the NWHI is as or more differentiated from the MHI as it is 
from the remainder of  the North Pacific. Structure groups 

Table 4  Estimates of  genetic differentiation between eastern and CNP strata and between MHI social clusters

Comparison mtDNA nucDNA

ΦST χ2 P value FST F′st χ2 P value

MHI versus NWHI 0.131 0.005 0.030 0.119 <0.0001
MHI versus CNP 0.658 <0.0001 0.012 0.047 <0.0001
MHI versus ETP 0.709 <0.0001 0.023 0.090 <0.0001
NWHI versus CNP 0.618 <0.0001 0.018 0.074 <0.0001
NWHI versus ETP 0.695 <0.0001 0.031 0.121 <0.0001
ETP versus CNP 0.091 <0.0001 0.012 0.050 0.0002
Among social clusters
  1 versus 2 −0.029 0.5710 0.008 0.029 0.015
  1 versus 3 0.376 0.0001 0.012 0.048 0.001
  2 versus 3 0.342 0.0006 0.012 0.051 0.004
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the NWHI samples with all offshore samples, to the exclu-
sion of  the MHI. Similarly, the Mantel test indicates that all 
North Pacific samples except for the MHI conform to an 
isolation-by-distance model, again suggesting that the NWHI 
population has greater genetic connectivity to offshore ani-
mals than to the MHI population.

The different patterns of  differentiation revealed by the 
mtDNA and nucDNA data sets may reflect a difference 
between the colonization history and contemporary gene 
flow patterns within the Hawaiian Archipelago. The fact 
that the MHI and NWHI share a mitochondrial lineage sug-
gests that they have a shared colonization history, either of  
one population founding the other, or both being founded 
simultaneously by related individuals. Strong site fidelity 
and an absence of  immigration, either due to social exclu-
sion of  immigrants or reduced fitness of  immigrants in the 
novel insular environment, could have prevented the mix-
ing of  haplotypes and allowed the evolution of  new hap-
lotypes in situ. However, the nuclear analyses that grouped 
the NWHI with offshore samples rather than MHI suggests 
that, in the nuclear genome, the NWHI population is more 
genetically similar to the offshore populations than it is to 
the MHI population. Discordant patterns between mater-
nally and biparentally inherited markers have been attributed 
to colonization histories that differ from patterns of  ongo-
ing, male-mediated gene flow in other studies as well (Comes 
and Abbot 1998; Gomez et al. 2002). Similarly, strong social 
structure and small population size can result in the shared 
colonization history reflected in the mitogenome of  2 popu-
lations being quickly obscured in their nuclear genomes (e.g., 
Northeast Atlantic bottlenose dolphins; Mirimin et al. 2011).

The apparent similarity in the nuclear genome between 
the NWHI population and the rest of  the North Pacific 
should be viewed with caution, however, due to the small 
sample sizes from these strata. The MHI population is much 
better sampled than any other region, comprising half  of  our 
sample set. The fact that we have sampled nearly two-thirds 
of  that population may enable Structure to identify that 
very well-sampled gene pool as a unique group, while small 
sample sizes from the remaining strata may result in insuf-
ficient power to detect structure in the remainder of  the data 
set. Nonetheless, the fact that the NWHI animals clustered 
with the offshore samples instead of  with MHI animals sug-
gests that they are at least as different from the MHI animals 
as they are from the offshore animals. Additional samples 
from the NWHI population are needed in order to better 
evaluate its differentiation from the other strata.

There was one sample in our data set that deviated from 
the strong pattern of  geographic concordance in the mito-
chondrial data set—a male sampled off  the coast of  Hawai’i 
Island that possessed a haplotype also detected off  the coast 
of  Australia and not closely related to the other insular hap-
lotypes. This animal assigned more strongly to the eastern 
Pacific than to the MHI population. Though its P value from 
the exclusion test was not quite statistically significant, it is the 
only animal from that encounter that has never again been 
sighted or rebiopsied. These results suggest that it may not 
be a member of  the MHI population, but rather an offshore 

animal that was interacting with the MHI population. If  that 
is the case, it is the first documented interaction between the 
populations.

Our estimates of  FST and F′ST were not entirely consistent 
with the patterns suggested by Structure and Mantel tests, 
instead showing that differentiation was highest in compari-
sons involving the NWHI and lowest in comparisons involv-
ing the CNP. However, the magnitude of  differentiation 
between populations, as measured by F-statistics, depends 
not only on the rate of  gene flow between them but also 
on their effective population sizes. Consequently, the relative 
magnitude of  FST and F′ST for different population pairs tells 
us little about the relative rates of  gene flow when those pairs 
differ substantially in abundance.

Evidence of Sex-Biased Dispersal

For populations with ongoing gene flow that is not sex-
biased, we would expect FST (or ΦST) for mtDNA markers 
to be 4 times larger than for nucDNA markers due to the 
differences in inheritance modes (Larsson et al. 2009). The 
ratio of  mtDNA ΦST to nucDNA FST between MHI and 
NWHI roughly conformed to this expectation. However, 
for all other comparisons the ratio was substantially higher, 
ranging from 8 to 55. For ΦST versus F′ST, the ratio was 
1.1 for MHI versus NWHI and ranged from 1.8 to 14 
for all other comparisons. Ratios differing from 4 are not 
unexpected, given the high variance in estimates of  FST. 
Nonetheless, the discrepancy between estimates of  differ-
entiation for the 2 data sets indicates some degree of  male-
mediated gene flow between these populations. The strong 
phylogeographic pattern in the mtDNA data set and the 
absence of  haplotype 2 from one of  the MHI social clusters 
indicates that both sexes exhibit strong fidelity to their natal 
social cluster. If  mating occurs between populations and 
social clusters, the mtDNA pattern would be maintained 
while allowing for gene flow in the nuclear genome. This 
type of  social organization has been observed in fish-eat-
ing killer whales in the nearshore waters of  the temperate 
North Pacific (Ford et al. 2011; Parsons et al. 2013). These 
killer whales are highly social, with both sexes exhibiting 
strong philopatry to natal social groups, known as “pods” 
(Baird and Whitehead 2000; Ford et al. 2011). This social 
structure has resulted in very low levels of  genetic variation, 
with each pod possessing a single mitochondrial haplotype 
(Hoelzel et al. 1998; LeDuc et al. 2008; Parsons et al. 2013). 
Pods from the same population share identical or similar 
haplotypes, whereas different populations typically do not 
share haplotypes (Parsons et al. 2013). Mating occurs both 
within and between pods and, at lower rates, between popu-
lations (Ford et al. 2011), resulting in lower levels of  nuclear 
than mitochondrial differentiation between populations 
(Parsons et al. 2013).

Unlike killer whales, in which the pattern of  pod-specific 
haplotypes is consistent across most of  the North Pacific, 
our results indicate that phylogeographic structuring of  false 
killer whale haplotypes occurs primarily within the Hawaiian 
Archipelago (Figure 3). In fact, the most common haplotype 
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in the North Pacific (haplotype 9) was detected in animals 
ranging from the coast of  Mexico to the northwestern edge 
of  the Hawaiian EEZ and is more similar to the haplotype 
from the Indian Ocean than it is to the Hawaiian insular hap-
lotypes. This pattern suggests that there is greater site fidelity 
within the Hawaiian Archipelago than there is in the remain-
der of  the Pacific.

Though the difference in estimates of  differentiation for 
the mtDNA versus nucDNA data set is greater than expected 
in the absence of  sex-biased gene flow, FST estimates based 
on microsatellites are known to be downwardly biased due to 
their high levels of  diversity and their mutation model, which 
results in high homoplasy (see Meirmans and Hedrick 2011). 
F′ST attempts to correct for diversity, but in no way corrects 
for homoplasy (Rousset 1996; Kronholm et  al. 2010). The 
degree of  bias associated with estimates of  differentiation 
derived from a microsatellite data set can be assessed by com-
parison with other nuclear markers, such as single nucleo-
tide polymorphisms (SNPs) or nuclear sequence (Smith et al. 
2007; Morin et al. 2012). The lower mutation rates and low 
level of  homoplasy in these markers render them less vul-
nerable to bias, though many more markers are necessary 
to achieve comparable statistical power (Morin et al. 2009c). 
Consequently, it would be useful to further investigate the 
extent of  male-mediated gene flow among North Pacific 
false killer whale populations using SNP or nuclear sequence 
loci.

Oceanographic Influences on Differentiation

The evolution of  2 separate island-associated populations in 
this otherwise offshore species may be driven by the unique 
habitats associated with the Hawaiian Archipelago. The 
Hawaiian Archipelago lies in the center of  the North Pacific 
central gyre, an area of  low productivity once thought to be 
largely homogenous (Schmelzer 2000). However, in the last 
2 decades oceanographic research has revealed considerable 
variability around the island chain. The large, steep-sided 
islands in the MHI disrupt the flow of  the prevailing wind 
and ocean currents, producing nearshore upwelling and per-
sistent eddies on the leeward sides of  the islands that may 
increase productivity (Doty and Oguri 1956; Seki et al. 2002). 
Productivity is likely further enhanced by runoff  from the 
islands, which brings nutrients into the nearshore environ-
ment. The MHIs are surrounded by large areas of  shallow 
water habitat, which support diverse reef  and benthic com-
munities not present in the offshore waters. All of  these 
factors combine to result in an abrupt habitat discontinu-
ity between the insular environment and the immediately 
adjacent offshore realm. The resource specialization and 
behavioral adaptations necessary to efficiently exploit such 
different habitats have been proposed as important mecha-
nisms driving population differentiation in other cetaceans 
(Hoelzel et  al. 1998; Natoli et  al. 2005; Möller et  al. 2007; 
Martien et al. 2012) and may explain the evolution of  insular 
populations of  false killer whales and other marine mammal 
species around the MHI (Andrews et al. 2010; Martien et al. 
2012).

Like the MHI, the NWHI encompass large areas of  shal-
low water habitat. However, the dramatic difference in land-
mass between the MHI and NWHI and the more northerly 
location of  the NWHI result in considerable oceanographic 
differences between the 2 biomes. The mountainous islands 
of  the MHI have a combined land area of  approximately 
16 000 km2, whereas the NWHI, which consist of  sub-
merged and nearly submerged atolls and islands, have a total 
land area of  only 8 km2 (Baker et  al. 2011). Consequently, 
many of  the factors contributing to increased productivity 
in the nearshore waters immediately surrounding the MHI 
are absent in the NWHI. Furthermore, the NWHI are 
located in an area where cool, vertically mixed, high surface 
chlorophyll water from the subarctic mixes seasonally with 
warmer, vertically stratified, low surface chlorophyll water of  
the North Pacific central gyre (Polovina et  al. 1994, 2001). 
This mixing zone, known as the Transition Zone Chlorophyll 
Front (TZCF), results in much higher average productivity 
in offshore waters surrounding the NWHI (Schmelzer 2000; 
Polovina et al. 2001, 2008), reducing the habitat differences 
between nearshore and offshore waters in that part of  the 
archipelago. The southern extent of  the TZCF varies over 
seasonal and decadal scales (Polovina et al. 1994, 2001, 2008), 
resulting in high interannual variability in oceanographic con-
ditions that has been linked to variability in the abundance 
and survival rates of  primary producers, reef  fishes, spiny 
lobsters, seabirds, and Hawaiian monk seals in the NWHI 
(Polovina et al. 1994; Schmelzer 2000; Baker et al. 2007).

Differences between the MHI and NWHI have been 
observed in the population structure and social organization 
of  several species of  marine mammals (Andrews et al. 2010; 
Baker et  al. 2011; Baird et  al. 2013). Andrews et  al. (2010) 
observed less genetic structuring and higher group stabil-
ity in spinner dolphins in the NWHI than the MHI, both 
of  which they attributed to differences in the availability of  
resting habitat and prey resources. The endangered Hawaiian 
monk seal also exhibits genetic differentiation and dramati-
cally different population trends between the NWHI and 
MHI (Baker et al. 2007, 2011). Similarly, restricted gene flow 
between MHI and NWHI false killer whale populations may 
reflect differences in foraging strategies and hunting methods 
needed in order to exploit resources in the different envi-
ronments. The cooperative hunting methods employed by 
MHI false killer whales may result in reduced fitness or social 
exclusion of  would-be immigrants, as has been suggested for 
other species (Baird and Whitehead 2000).

Summary

Our results corroborate the findings of  previous photo-iden-
tification (Baird et al. 2008), satellite tagging (Baird et al. 2010, 
2012), and genetic (Chivers et al. 2007) studies that demon-
strated the ecological and genetic uniqueness of  MHI false 
killer whales. The phylogeographic signal revealed by mtDNA 
indicates strong fidelity of  both sexes over a long period of  
time. The apparent in situ evolution of  haplotypes not found 
in the offshore population combined with the unique habitat 
in which this population resides suggest that this population 
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may have evolved local adaptations to their particular insu-
lar habitat, a possibility that should be further investigated. 
nucDNA suggest that the MHI population is as different 
from the NWHI population as it is from offshore animals, 
while the failure of  Structure to delineate the social clusters 
within the MHI suggests that the social affiliations captured 
by the photo-identification data are more fluid than popula-
tion-level distinctions. The recent severe decline in the abun-
dance of  the MHI population and the unique anthropogenic 
threats faced by marine species in the MHI (Baker et al. 2011) 
raise concern regarding the persistence of  this population.

Supplementary Material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.
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